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GROWTH LAW OF A SPHERICAL SECOND PXASE AS 

GOVERNED BY SIMULTANEOUS HEAT AND 

MULTI-COMPONENT MASS TRANSFER LIMITATIONS-I 

W. S. CHANG 

Max Planck Institut fiir Biophysikalische Chemie, Karl Friedrich Bonhoeffer Institute, Gbttingen, West Germany 

(Receiued 18 September 1972 and in revised~form 5 February 1973) 

Ah&act-In Part I, new theoretical treatments of the growth of a stationary spherical second phase as 
governed by simultaneous heat and muiti-component mass transfer limitations are demonstrated. The new 
method is a direct extension of [l-3]. It demonstrates that the solution to these complex coupled cases can 
be related to the available uncoupled cases. Thus, treating the so-called “impurities” as components in the 
surrounding first phase, our results should include the growth of a spherical second phase as governed by 

simultaneous heat and mass transfer limitations in the presence of impurities as asymptotic cases. 

NOMENCLATURE 

function defined in equation (I 8). 
Part II. 
A(t) calculated from the heat 
transfer viewpoint; 
A(r) calculated from the ith com- 
ponent mass transfer viewpoint; 
function defined in equation (18), 
part III : 
&) calculated from the heat 
transfer viewpoint : 
J(r) calculated from the itb com- 
ponent mass transfer viewpoint: 
function defined in equation (19), 
Part II; 
B(r) calculated from the heat 
transfer viewpoint; 
B(r) calculated from the ith com- 
ponent mass transfer viewpoint: 
function defined in equation (191, 
Part III: 
i?(r) calculated from the heat 
transfer viewpoint: 
i?(r) calculated from the ith com- 
ponent mass transfer viewpoint : 

= CpCTm - ~~)/~(~~) 
[dimensionless]: 

erg = Cc,i - c,J/Cc& - ‘wi> 
[dimensionless] ; 

‘i, mass fraction of ith solute 
dimensionless]; 

‘di’ second phase ith solute mass 
fraction [dimensionless] ; 

c 
mi’ itb solute mass fraction far away 

from the second phase sphere 
dimensionless] ; 

% specific heat of the surrounding 
first phase [Cal/g OK]; 

CsaJT c,, C,? * * *, CT,_ 1), first component 
(main solute) saturation mass 
fraction [dimen~oniess] ; 

‘wi, ith solute mass fraction at the 
interlace [dimensionless] ; 

D, effective Fick’s diffusion coef- 
ficient of ith solute [cm2/s] : 

D/D& material time derivative defined 
in text: 

f 0, (3, function de&d in equation (42), 
Part II; 

J(t. e). fun&ion defined in equation (41) 
Part III; 

G(t)* function defined in equation (17), 
Part II: 
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G,W, 

G,i(tI, 

G(t). 

G,(t), 

G*i(f). 

H(t), 

H,(t), 

H,i(t), 

m. 

A,( tk 

q&Y 

WJ, 

N, 

1 ah, vg 

NU$, 

P? 
R, R(t), 

R,, R,(t), 

W. S. CHANG 

G(t) calculated from the heat 
transfer viewpoint: 
G(t) calculated from the ith com- 
ponent mass transfer viewpoint: 
function defined in equation (17). 
Part III: 
G(t) calculated from the heat 
transfer viewpoint: 
G(t) calculated from the ith com- 
ponent mass transfer viewpoint: 
function defined in equation (41), 
Part II: 
H(t) calculated from the heat 
transfer viewpoint; 
H(t) calculated from the ith com- 
ponent mass transfer viewpoint: 
function defined in equation (401, 
Part III: 
I?(t) calculated from the heat 
transfer viewpoint: 
B(t) calculated from the ith com- 
ponent mass transfer v6ewpoint: 
latent heat of phase transition 
(< 0 for endothermic: > 0 for 
exothermic) [Cal/g] ; 
total number of solutes (or com- 
ponents) in the surrounding first 
phase [dimensionless] : 

= b/P,. q = (P/P,) 
x (C (Tm - Tw)lUTw)) 

[dimensionless : 4 
z (PiPJ f & s (PiPJ 

’ (C’,i - ‘m,i)/(‘,i - ‘,i)) 
[dimensionless] : 
dummy integration variable: 
instantaneous radius of the grow- 
ing second phase sphere [cm] : 
R, R(t) calculated from the heat 
transfer viewpoint [cm] ; 

Rmi, R,i(t), R, R(t) calculated from the ith 
component mass transfer view- 
point [cm] : 

A, A(t), 3 dRldt s dR(t)/dt [cm/s]; 

Rcr initial radius of the growing 
second phase sphere [cm] : 

the center of the second phase 
sphere [cm]: 
dummy integration variable: 
time (reckoned from the com- 
mencement of the growth pro- 
cess) [s] : 
temperature [“K] : 
second phase sphere surface tem- 
perature [“K] : 
temperature far away fern the 
second phase sphere [“K] : 
translational velocity of the cen- 
ter of the second phase sphere 
relative to the surrounding fluid 
at infinity [cm/s] : 
radially spherically symmetric 
convective velocity field induced 
by mass transfer process itself 
[cm/s] : 
radial velocity component field 
induced by the translatory 
motion of the second phase 
sphere [cm/s] : 
tangential velocity component 
field induced by the translatory 
motion of the second phase 
sphere [cm/s] : 
dummy integration variable : 
distance from the interface [cm]. 

Greek symbols 
x. s A/(pCp), thermal diff‘usivity of 

the surrounding first phase 
[cm%] : 

B. growth constant [dimension- 
less] : 

lq /3 calculated from the heat trans- 
fer viewpoint {dimensionless] : 

Pnti 
p calculated from the ith com- 
ponent mass transfer viewpoint 
[dimensionless] : 

P. density of the surrounding lirst 
phase [g/cm31 : 

pd’ 
density of the second phase 

k/cm31 : ,. 
1. radial coordinate reckoned from iL. eflective thermoconductlvlty of 
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K 

8. 

;: 
;w 

Y,(t). 

-&i(t). 

7(t). 

i’*(r). 

the surrounding first phase 
[cal/sm”K] : 
viscosity of the surrounding first 
phase [cp] : 
viscosity of the second phase 

kP1 : 
= pd/b ratio of viscosities [di- 
mensionless] : 
angle [radians] : 
dummy integration variable: 
dummy integration variable : 
function defined in equation (43), 
PartII: 
y(t) calculated from the heat 
transfer viewpoint: 
y(t) calculated from the ith com- 
ponent mass transfer viewpoint 
function defined in equation (42) 
Part III : 
P(t) calculated from the heat 
transfer viewpoint : 
P(t) calculated from the ith com- 
ponent mass transfer viewpoint: 

pJp, /3), function defined in equa- 
tion (11). Part I. 

Subscripts 
d, 
di. 

h. 

i. 

mi. 

sat 1. 

W, 
wi. 
0. 
3oi, 

pertaining to the second phase: 
pertaining to the second phase 
and the ith component: 
pertaining to the heat transfer 
viewpoint : 
pertaining to the ith component: 
if not specified, i runs from 1 
toN- 1; 
pertaining to the ith component 
mass transfer viewpoint: 
first component saturated (per- 
taining to the equilibrium at the 
phase interface): 
at the interface, r = R(r): 
ith component at the interface: 
evaluated at r = 0: 
ith component far away from 
the center of the second phase 
sphere: 

!=, far away from the center of the 
second phase sphere. 

Superscripts 

9. pertaining to multi-component 
second phase : 

-9 pertaining to the fast moving 
case. 

KVl’RODUCTION 

GROWTH laws of stationary, slowly moving, and 
fast moving spherical second phase as governed 
by simultaneous heat and mass transfer limita- 
tions have been obtained recently [l-3]. The 
second phase can be a bubble (gas), a droplet 
(liquid), or a particle (solid). In the treatments of 
[l-3], the surrounding first phase is composed 
of solute and solvent, i.e. two-component 
environment. Now, we extend the treatment to 
the case when the surrounding first phase is 
composed of (N - 1) solutes and solvent, i.e. 
N-component environment. Thereby, treating 
the so-called “impurities” as components in the 
surrounding first phase, our results should 
include the growth of a spherical second phase 
as governed by simultaneous heat and mass 
transfer limitations in the presence of impurities 
as asymptotic cases, as will be demonstrated 
later. In what follows, we will always take the 
first component as the main solute and Nth 
component as the solvent. In Part I, we treat the 
case when there exists no translatory motion of 
the center of the sphere, i.e. the spherical second 
phase is stationary with respect to the laboratory 
coordinates. In Part II, we treat the case when 
the spherical second phase is slowly moving. In 
Part III, we treat the case when the spherical 
second phase is fast moving. All the main 
results obtained in [l-3] when the surrounding 
tirst phase is two-component environment will 
be recovered as the asymptotic cases. as will be 
demonstrated in due course. 

STATEMENT OF THE PROBLEM 

The problem under consideration is as follows: 
A spherical second phase of negligible size, 
i.e. R(0) = R, z 0, is produced in an environ- 
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ment, i.e. the surrounding first phase. at time 
t 7 0. The second phase can be a bubble (gas). 
a droplet (liquid), or a particle (solid). At time 
t = 0, the entire second phase is assumed to 
have attained a certain proper equilibrium 
temperature Tw, i.e. the wet bulb temperature. 
and remain at this temperature throughout the 
growth process. That is, one assumes that 
throughout the entire transient growth process 
a constant T, exists, corresponding to a set of 
constant surface concentrations, Csatl(TV. CW,. 
C . . . . CW,_,)andCWi(i=2,3 ,..., N-l), 
w&h must be found as part of the problem 
solution (see Discussion). At times f > 0, the 
spherical second phase grows in the surrounding 
first phase due to both heat and N-component 
mass transfer driving forces. 

The stationary spherical second phase is 
characterized by the following parameters: 
density, pP latent heat of phase transition, 
UT,) (c 0 for endothermic: > 0 for exother- 
mic), and first component saturation concentra- 
tion. Csal,(T. C,, C,, . . . . C,_ 1): the surrounding 
first phase is characterized by the following 
parameters: density. p, specific heat, C,, effec- 
tive thermoconductivity, L, and effective Fick’s 
diffusion coefficients, Di (i = 1. 2. . . . . N - 1). 
The first phase is initially at a uniform tempera- 
ture Tm, and concentrations Cri (i = I.?.. . . . 
N - l), while the second phase is assumed to 
have a uniform temperature ‘I, and concentra- 
tions Cdi (i = l1 2,. . . , N - 1) throughout the 
growth process. Thus, the mass transfer process 
within the second phase is not considered here. 

During the growth process. i.e. t 2 0, the 
system is described by the following equations, 

DT = rV2T 
Dt . 

R(t) < r < x (la) 

DC, = D.V2C. 
Dt ’ ” 

R(t) < r < x: (lb) 

with 

D d R2 
---+--_. 
Dt & r2 

and 

v2p r2< c ! r2 dr , Zr 

Tfr. 01 = T, 

Cjr, 0) = Cm i 

nm, f) = T, 

C,(x. t) = cxi 

T(R(t), tl = T, 

CJRW. t) = CIvi 

R(0) = R, a 0 

(?a) 

(‘b) 

(?a) 

(3b) 

(4a) 

(4b) 

f 5ai 

(5b) 

(6) 

where i runs from 1 to N - 1. z E jJpCPb is the 
thermal diffusivity of the surrounding first 
phase. and the first component surface concen- 
tration is assumed to be CW, = Csall(Tw. C ,,,,. 

Cw,. . Cw,_ I ). The problem is to find the 
LI priori unknown interface temperature T, and 
concentrations CWi (i = 1, 2. . . . N - I ) and 
obtain the growth law of the second phase. 
R(t). 

METHOD OF SOLUTION 

The key to this physically important problem 
is to recognize that the growth laws obtained 
from either heat or N-component mass transfer 
viewpoints must be identical. Thus. one obtains 
the compatibility conditions from which TV 
andCwi(i= l,?,..., N - 1) are calculated (see 
below). 

From the heat transfer viewpoint. i.e. the set 
of equations (la), (2a). (3a), (4a). (5a) and (6). 
the temperature variable T(r. 0 satisfies the 
same boundary-value problem as in [4-61. 
Thus, one gets [4-61 
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where 

T- T, 7 xe2 exp [-x2 - 2.(1 - pJ&jI,3x-1]dx 
= [r/~Jw 

T, - T, Of (7) 

/ 
xS2exp[-x2 -2.(1 -p,/p)./3,3.X-l]dx 

h 

and /I, is given by with 

Nafl= -4(l -fph) 
with 

pd Pd UT,) 

(8) 

(9) 

(10) 

and the function +(l - p,/p, B) defined by 

$(I -~,/I)z2/?3exp[jJ2+2 

X(1 -:).j?‘]Tl’np[-x2-2 

x (1 -$P3..-‘]dx. (11) 

From the ith component mass transfer view- 
point, i.e. the set of equations (lb), (2b), (3b), 
(4b), (Sb) and (6) the concentration variable 
C,(r. t) satisfies the same boundary-value prob- 
lem as in [4-6]. Thus, one gets [4-6] 

Na”,, = - q5( 1 - $, #?,) (14) 

(15) 

and the function &l - pd/p, Bj is given in 
equation (11). The uniqueness of the growth law 
of the second phase, i.e. R,(t) = R,,(t) = R,,(C) 
= . . . = R ,N_I(t) = R(t), gives the following 
compatibility conditions 

B h ’ /a \’ = fi,,,,. ,jD, 

= B ‘D 
rn2’V 2 

=- - - 

= BmN_l. v/D,_, (16) 

where /I,, and gti are given by equations (9) 
and (14). respectively. Owing to the C,,,(‘i; C, 
C 3, . . . , C,_ r) relation. equation (16) determines 
a unique value of T, and a unique set of values 
for CWi (i = 1,2,. . . , N - 1). Then, the required 
growth law of the second phase follows either 
from equations (8)-(11) or equations (13)-(15) 
and (11). The comprehensive plot of equations 
(9) or (14) was already shown in [ 11, which is 
equivalent to Striven’s Fig. 1 [6]. 

Ci - Cmi _ (,,2 D,t x-2 eXP ( - X2 - 2. [l - @d/P)] ~G-‘} dx P 
C - ‘ai Ji xv2 exp ( - x2 wi 

- 2* I1 - (Pd/P)l .8Zix-‘} dX 
(12) 

where 

R,,(t) = 2B,J(Dit) 

and /3,i is given by 

In order to find the values of T, and CWi (i = 
(13) 1.2,..., N - 1) one has to use a trial-and-error 

method. However, in certain physically import- 
ant asymptotic cases, T, and C,,,i (i = 1,2, 
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. . . , N - 1) can be readily obtained analytically 
(see [l] for the case of N = 2). In particular. in 
case D, = D, = . . . = D,_, = cq which is 
reasonable for a gaseous first phase. the com- 
patibility conditions. equation (16). are exactly 
satisfied for any p,/p if one merely sets Bf: = 

pm1 = BB,, = Pm3 = . = BmN_ 1, i.e. 
Cp.(Tm--T,)“’ c,, - c,, 

WJ = Gl - Cwl 

cw2 - c*2 
= Cd2 - L2 

C WV- 1 - CCON- 1 

= GIN-1 - Cd-1 
(17) 

where Cw, = Csatl(Tw, Cw,, C+ . . . C,,,,_ lb 
Owing to the Csatl (T C,. C,. . . . C, _ i) relation. 
equation (17) determines a unique value of T, 
and a unique set of values for C,*,* (i = 1. 2. . . 
N - 1). Then. the required growth law of the 
second phase follows either from equations 
(St(l1) or (13)-(15) and (11). To tix the ideas, we 
will consider the following physically important 
asymptotic cases. 

Case 1. N=2 (18) 

When N = 2, i.e. two-component environ- 
ment, the main results obtained in [l] are 
recovered, as expected. 

Case2: N = 3 (19) 

When N = 3. i.e. three-component environ- 
ment. equation (16) degenerates into the follow- 
ing form 

P ,, . \ r = 8,1 . viD, 

= B :D m2'V 2 (20) 

where /I,, and /3,i (i = 1,2) are given by equa- 
tions (9) and (I 4). respectively. Treating the first 

component as the main solute. the second com- 
ponent as the impurity, and the third component 
as the solvent. this is the case when the growth 
of the spherical second phase is governed by 
simultaneous heat and mass transfer limitations 
in the presence of an impurity. Owing to C,,, ( 7: 
Cl) relation. equation (20) determines unique 
values for T,“_ C’,“i = Csatl(Tw. Cwz). trod C,,,,. 
Then. the required growth law of the second 
phase follows either from equations (St-cl 1) 
or (13H15) and (11). 

DISCUSSION 

Before we proceed further. we feel it is neces- 
sary to recapture the fundamental assumptions 
used in Part I. First of all, it is assumed that 
solute and heat diffusions in the surrounding 
first phase are adequately described by unsteady 
state diffusion equations with effectively con- 
stant Fick’s diffusion coefficients and an effec- 
tively constant thermoconductivity. It is assumed 
that all the parameters characterizing second 
and first phases are effectively constant and there 
exists a local equilibrium relationship, C,,, 1 (T, 
cwz, cw3. . . . . CwN _ 1) at I = R(t) throughout the 
growth process. The assumption of negligible 
initial size has been discussed in [I] and shown 
to be valid. The compatibility conditions. 
equation (16) are the necessary and sufficient 
conditions for the existence of the stated constant 
interface conditions solution, i.e. it guarantees 
the uniqueness of the growth law of the second 
phase, R(t). Thus, the basic assumption of 
strictly constant T, and C, (i = 1 ? 2, . . . , N - 1) 
is automatically justified a posteriori for the 
second phase problems of the type considered 
here. Physically. the necessary and sufficient 
compatibility conditions mean that the second 
phase can grow if one maintains 77%. t) = 
T, und Ci(cc,t) = CJoi (i = 1.2. . . . N - 1) 
throughout the growth process. 

CONCLUSIONS 

In Part I. an exact treatment of the growth 
of a stationary spherical second phase in the 
presence of simultaneous heat and multi-com- 
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ponent mass transfer limitations has been 
demonstrated. In general, a trial-and-error 
method must first be used to solve the compati- 
bility conditions, equation (16), to obtain the 
a priori unknown second phase temperature 
and surface concentrations. Having thus deter- 
mined T, and C,i(i = 1,2,. . . , N - 1). the 
growth law of the second phase is then readily 
obtained. Treating the so-called “impurities” 
as components in the surrounding first phase, 
our results should include the growth of a 
spherical second phase as governed by simul- 
taneous heat and mass transfer limitations in the 
presence of impurities as asymptotic cases. 
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LOI DE CROISSANCE DUNE SECONDE PHASE SPHERIQUE GOUVERNEE PAR 
DES CONDITIONS DE TRANSFERTS SIMULTANES DE CHALEUR ET DE MASSE-I 

R&mm&-On considere dans une premiere partie, de nouveaux traitements th&iques de la croissance 
dune seeonde phase sph6rique et stationnaire, pilot&e par des limitations de transferts simulta& de 
chaleur et de masse a plusieurs composants. La nouvelle mtthode est une extension directe de celle des 
r&rences (l-3). 11 est dtmontre que la solution de ces cas couplCs compliqu6s peut etre reli&e a des cas non 
couplCsconaus.~si,traitantles”impuraCs”commedescomposantsdansla~~i~ephaseenvironrrante, 
Ies rtsultats peuvent inclure, comme des CBS asymptotiques, la croissance dune seconde phase sphtrique 
gouvem6e par des limitations de transfer& simultan&s de chaleur et de masse en pr6sence des impuret6s. 

WACHSTUMGSGESETZ EIIUER KUGELFGRMIGEN SEKUNDARPHASE FUR 
GLEICHZEITIGEN WARME- UND VIEGKOMPONENTEN-STOFFUBERGANG-I 

BIm Teil I werdat neue theoretische Eetrachtungm Gber das Waobmim einer durcb 
gleichxeitigen w&nne&rgang uBd MebrkomponeIlteBatomlbergang begrul2tar statiim&rQ kugcl- 
t&m&n Sekund&rphase angestellt. Die neue Metbode ist eine unmitt.eIbam Erweitcrtmg van [l-3]. Sie 
z&t, dam die L&ung diesa kompln Bberlagerten FIlIle auf vorhandene ungekoppelte FIiIk tlbertragen 
werden kann Indan man dieae sogenarmten “Unreinheiten” als Komponentar in da umgebenden erstai 
Phase bebaudelt, solltea unsere Baziehungen das Waohstum eina dumb gleiobzeitigen W&mm- tmd 
Stoffilbergang w kugelI?nmigat Sekundllrph+se in Auwgenbeit da Unreinbeiten als asympto- 

tische Flllle enthahen. 

BAHOH POCTA C@EPIV-IECKOH BTOPOH @A3bI I-IPH OAHOBPEMEHHOM 
I-IEPEHOCE TEIIJIA M MHOPOKOMIIOHEHTHOH MACCbI-I 

kIEOT8qEtfl- B 4acTB I noitaaaria BoBan Teopemrecrtafi TparcToBBa pocra CTaqMOHapHOti 
c@eprrsecKofi B~0p0il $anbr nprl COBMeCTHOM neperioce Tenna A MAO~OKOM~OHeHTHO~ uaccbr. 
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Hoesrir .nt!TO.( HBiIJieTCR IIpRMMM ~pO~O~HieHlle%l MeTOJ3, II3JIOHSeHHOrO B [I-~]. UH nOK;a- 

3bxBaeT, wo SnH pemeem TaKKX c~owi~x aartas BaamocBfi3amioro Term044 uaccooheaa 

MO~HO mnonb303aTb H3BecTme ;Im ~POCTUX aanas pemewm. T~KHM o6paaoM, pacc- 

MaTpaBaKTaKHaabrBaeMbIempkfMecmBKa~ecTBe KOMlIOHeHToKpy?KaIOiQe~HxIIepBoti~a3hl, 

Keorixofimio BK,?WIaTb KaK aCI%MllTOTSi'leCK~fi CJ-fyWii pOCT C@epWeCKOfi BTOpOth #a3bl, 

onpe~ememdk 3aKoKoMepKocTmm ogxioepeMeKKor0 Tenno-u racconepeKoca np5i Kanwtm 

npmeceti. 


