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Abstract—In Part I, new theoretical treatments of the growth of a stationary spherical second phase as
governed by simultaneous heat and multi-component mass transfer limitations are demonstrated. The new
method is a direct extension of {1-3]. It demonstrates that the solution to these complex coupled cases can
be related to the available uncoupled cases. Thus, treating the so-called “impurities™ as components in the
surrounding first phase, our resuits should include the growth of a spherical second phase as governed by
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simultaneous heat and mass transfer limitations in the presence of impurities as asymptotic cases.
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G(t) calculated from the heat
transfer viewpoint:
G(t) calculated from the ith com-
ponent mass transfer viewpoint:
function defined in equation (17),
Part IIT:
G(¢) calculated from the heat
transfer viewpoint:
G(1) calculated from the ith com-
ponent mass transfer viewpoint:
function defined in equation (41),
Part I1:
H(t) calculated from the heat
transfer viewpoint: '
H(t) calculated from the ith com-
ponent mass transfer viewpoint:
function defined in equation (40),
Part I11:
A1) calculated from the heat
transfer viewpoint:
H(1) calculated from the ith com-
ponent mass transfer viewpoint:
latent heat of phase transition
(< 0 for endothermic: > 0 for
exothermic) [cal/g];
total number of solutes (or com-
ponents) in the surrounding first
phase [dimensionless]:
= (p/p,;- By = (p/py)
x (C(T, — T,)/L(T,))

[dimensionlessj:
= (p/p,) .- B, = (pip,)

X ((Cwi - Caoi)/(cdi - Cwi))
[dimensionless]:
dummy integration variable:
instantaneous radius of the grow-
ing second phase sphere [cm]:
R, R(1) calculated from the heat
transfer viewpoint [cm];
R, R(t) calculated from the ith
component mass transfer view-
point [cm]:
= dR/dr = dR(t)/dt [cm/s];
initial radius of the growing
second phase sphere [cm]:
radial coordinate reckoned from

Drg,

rt’

Dy

X,
Y,

A

the center of the second phase
sphere [cm]:

dummy integration variable:
time (reckoned from the com-
mencement of the growth pro-
cess) [s]:

temperature [°K]:

second phase sphere surface tem-
perature [°K]:

temperature far away {rom the
second phase sphere [°K]:
translational velocity of the cen-
ter of the second phase sphere
relative to the surrounding fluid
at infinity [cm/s]:

radially spherically symmetric
convective velocity field induced
by mass transfer process itself
[cm/s]:

radial velocity component field
induced by the translatory
motion of the second phase
sphere [cm/s]:

tangential velocity component
field induced by the translatory
motion of the second phase
sphere [cm/s]:

dummy integration variable:
distance from the interface [cm].

Greek symbols

= l/(pCp), thermal diffusivity of
the surrounding first phase
[em?/s]:

growth constant [dimension-
less]:

B calculated from the heat trans-
fer viewpoint {dimensionless | :

B calculated from the ith com-
ponent mass transfer viewpoint
[dimensionless]:

density of the surrounding first
phase [g/cm?]:

density of the second phase

(g/em?]: -
effective thermoconductivity of
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the surrounding first phase
[cal/sm°K]:

U, viscosity of the surrounding first
phase [cp]:

Ky viscosity of the second phase
[ep]:

K = pu,/u. ratio of viscosities [di-
mensionless]:

6. angle [radians]:

T, dummy integration variable:

&, dummy integration variable:

(1), function defined in equation (43),
PartII:

7,(0)- y(t) calculated from the heat
transfer viewpoint:

Pmil)s (1) calculated from the ith com-
ponent mass transfer viewpoint

F(e), function defined in equation (42),
Part II1:

F(0). P(t) calculated from the heat
transfer viewpoint:

(z) calculated from the ith com-
ponent mass transfer viewpoint:
&(1 — p,/p, f). function defined in equa-
tion(11). Part 1.

Tl 1),

Subscripts

d, pertaining to the second phase:

di. pertaining to the second phase
and the ith component:

h. pertaining to the heat transfer
viewpoirit:

i pertaining to the ith component:
if not specified, i runs from 1
toN - 1:

mi. pertaining to the ith component
mass transfer viewpoint:

sat 1, first component saturated (per-
taining to the equilibrium at the
phase interface);

w, at the interface, r = R(r):

wi. ith component at the interface:

0. evaluatedatt = 0:

oo, ith component far away from

the center of the second phase
sphere:

2n

o, far away from the center of the

second phase sphere.
Superscripts

g. pertaining to multi-component
second phase:

~, pertaining to the fast moving
case.

INTRODUCTION

GrowTH laws of stationary, slowly moving, and
fast moving spherical second phase as governed
by simultaneous heat and mass transfer limita-
tions have been obtained recently [1-3]. The
second phase can be a bubble (gas), a droplet
(liquid), or a particle (solid). In the treatments of
[1-3], the surrounding first phase is composed
of solute and solvent, ie. two-component
environment. Now, we extend the treatment to
the case when the surrounding first phase is
composed of (N — 1) solutes and solvent, i.e.
N-component environment. Thereby, treating
the so-called “impurities” as components in the
surrounding first phase, our results should
include the growth of a spherical second phase
as governed by simultaneous heat and mass
transfer limitations in the presence of impurities
as asymptotic cases, as will be demonstrated
later. In what follows, we will always take the
first component as the main solute and Nth
component as the solvent. In Part I, we treat the
case when there exists no translatory motion of
the center of the sphere, i.e. the spherical second
phase is stationary with respect to the laboratory
coordinates. In Part II, we treat the case when
the spherical second phase is slowly moving. In
Part II1, we treat the case when the spherical
second phase is fast moving. All the main
results obtained in [1-3] when the surrounding
first phase is two-component environment will
be recovered as the asymptotic cases, as will be
demonstrated in due course.

STATEMENT OF THE PROBLEM
The problem under consideration is as follows:
A spherical second phase of negligible size,
Le. R(0) = R, = 0, is produced in an environ-
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ment, ie. the surrounding first phase, at time
t = 0. The second phase can be a bubble (gas).
a droplet (liquid), or a particle (solid). At time
t = 0, the entire second phase is assumed to
have attained a certain proper equilibrium
temperature T, ie. the wet bulb temperature.
and remain at this temperature throughout the
growth process. That is, one assumes that
throughout the entire transient growth process
a constant T, exists, corresponding to a set of
constant surface concentrations, C_ (T, . C, ..
Cos --nCoy_Jand C  (i=23_....N~-1),
whith must be found as part of the problem
solution (see Discussion). At times t > 0, the
spherical second phase grows in the surrounding
first phase due to both heat and N-component
mass transfer driving forces.

The stationary spherical second phase is
characterized by the following parameters:
density, p, latent heat of phase transition,
L(T,) (< 0 for endothermic: > 0 for exother-
mic), and first component saturation concentra-
tion,C_ (T.C,,C,,....Cy,_,): the surrounding
first phase is characterized by the following
parameters: density. p, specific heat, C, effec-
tive thermoconductivity, 4, and effective Fick’s
diffusion coefficients, D,(i=1. 2. .... N — 1).
The first phase is initially at a uniform tempera-

N — 1), while the second phase is assumed to
have a uniform temperature T, and concentra-
tions C,; (i=1,2,...,N — 1) throughout the
growth process. Thus, the mass transfer process
within the second phase is not considered here.

During the growth process. ie. t = 0, the

system is described by the following equations,

Pl = aV?T, RYEr< = (1a)
Dt

D¢, = D.V*C, R <r<x (1b)
Dt 1 t

with

D é R 0 . C
A AN
Dt 6t+r2( 0 Rﬁr

W. §. CHANG

and

T(r.0) = T, (2a)
Cir.0)=C, . (2b)
T(co,t) =T {3a)
Clx.t)=C,, (3b)
TR, =T, (4a)
C{R(t).1) = C,, (4b)
. A eT

b= (&) e

. D. /oC.
R o I
R(O)=R,x0 (6)

where i runs from 1 to N — L.x = A/(pC ) is the
thermal diffusivity of the surrounding first
phase. and the first component surface concen-
tration is assumed to be C, =C_ (T,. C_,.
C C.n-,) The problem is to find the
a priori unknown interface temperature T, and
N — 1) and
obtain the growth law of the second phase.
R(r).

METHOD OF SOLUTION

The key to this physically important problem
is to recognize that the growth laws obtained
from either heat or N-component mass transfer
viewpoints must be identical. Thus. one obtains
the compatibility conditions from which T
and C, (i = 1,2,.... N — Dare calculated (see
below).

From the heat transfer viewpoint. .. the set
of equations (la), (2a). (3a), (4a). (5a) and (6).
the temperature variable T{(r.r)} satisfies the
same boundary-value problem as in [4-6].
Thus, one gets [4-6]
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x“2exp[—x*—2.(1 — p/p). B3x~1]dx
T-T, _ iy
T.-T. = Y
v ;x‘zexp[—x2—2.(1—pd/p).ﬁ,f.x“]dx
h
where ( 0, g "
/ Na, = —¢{1- m.) (
R, = 2B, . \/(x) (8)
and B, is given b with .= C_.
B,isg y Nagu.Eﬂ.B:“-Ef‘-Cm ®i (15)
Py Pq pa Cu—C,,
Nd = — ¢ 1 -~ ©)
p and the function ¢(1 — p,/p,f) is given in
with equation (11). The uniqueness of the growth law
C(T. - T) of the second phase, i.e. R,(t) = R, ,(t) = R,_,(t)
Neg=2 p=P Zoo” W (19 =...=R,_,t)=R@), gives the following
Pa py LT compatibility conditions

and the function ¢(1 ~ p,/p, ) defined by

¢<1 - %—‘,ﬁ) = 28° exp[/s2 +2
x (1 —E#‘).ﬁz].jx'zexp I:— x? —2
P
B
x (1 —Bl").ﬂ"‘.x"]dx. (11)
p

From the ith component mass transfer view-
point, ie. the set of equations (1b), (2b), (3b),
(4b), (5b) and (6), the concentration variable
C/(r. 1) satisfies the same boundary-value prob-
lem as in {4-6]. Thus, one gets [4-6]

By - Vo= B..;- \//Dl

= m2"\/D2

(16)

where B, and B, are given by equations (9)
and (14). respectively. Owing to the C, (T, C,
C,. ..., Cy_ ) relation. equation (16) determines
a unique value of T, and a unique set of values
for C,(i=1,2,..., N — 1). Then, the required
growth law of the second phase follows either
from equations (8)-(11) or equations (13)<15)
and (11). The comprehensive plot of equations
(9) or (14) was already shown in [1], which is
equivalent to Scriven’s Fig. 1 [6].

7
= Bpy-1-vDPn-y

C,- - Caoi 2Dy

x"2exp{ —x* —2.[1 — (ps/p)] . B2ix '} dx

Cwi - Coai N

T x2exp{ =% = 2.1 = (o) B ™) Ox

(12)

where

Rmi(t) = 2ﬂmi\/(Dit)
and fB_, is given by

(13)

In order to find the values of T, and C, (i =

1.2,..., N — 1), one has to use a trial-and-error
method. However, in certain physically import-
ant asymptotic cases, T, and C,, (i = 1,2,
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... N — 1) can be readily obtained analytically
(see [1] for the case of N = 2). In particular. in
case D, =D,=...=D,_, =a, which is
reasonable for a gaseous first phase. the com-
patibility conditions. equation (16). are exactly
satisfied for any p,/p il one merely sets B =

B, =B, =Bj;=...=By_yie
C,(T,—T)" C, —Cy
L(Tw) Cdl - Cwl
_C,,—C,
N Cp = Cy2
= CwN—l - CcoN-—l
CdN—l - CmN-—l
(17
where C,, = C_ (T, C .. C . .. Cono1)
Owingtothe C_ (T C,. C,..... Cy_ ) relation.

equation (17) determines a unique value of T,
and a unique set of values for C, (i = 1.2... ..
N — 1). Then, the required growth law of the
second phase follows either from equations
(8)(11) or (13)-(15) and (11). To fix the ideas, we
will consider the following physically important
asymptotic cases.
Case 1. N=2 (18)

When N = 2, i.e. two-component environ-
ment, the main results obtained in [1] are
recovered, as expected.
Case2: N =3 (19)

When N = 3. ie. three-component environ-
ment. equation (16) degenerates into the follow-
ing form

Bi-nt =B, VD

=Bz D,

where B, and B, (i = 1,2) are given by equa-
tions (9) and (14), respectively. Treating the first

(20)
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component as the main solute. the second com-
ponent as the impurity, and the third component
as the solvent. this is the case when the growth
of the spherical second phase is governed by
simultaneous heat and mass transfer limitations
in the presence of an impurity. Owing to Cg,, (T.
C,) relation, equation (20) determines unique
values for T. C , = C_ (T . C_ ;). and C ,.
Then. the required growth law of the second
phase follows either from equations (811}
or (13%15) and (11).

DISCUSSION

Before we proceed further. we feel it is neces-
sary to recapture the fundamental assumptions
used in Part 1. First of all, it is assumed that
solute and heat diffusions in the surrounding
first phase are adequately described by unsteady
state diffusion equations with effectively con-
stant Fick’s diffusion coefficients and an effec-
tively constant thermoconductivity. It is assumed
that all the parameters characterizing second
and first phases are effectively constant and there
exists a local equilibrium relationship, C,; (T,.
Cyu2 Cus - - -» Cun - 1) at r = R(t) throughout the
growth process. The assumption of negligible
initial size has been discussed in [1] and shown
to be valid. The compatibility conditions,
equation (16) are the necessary and sufficient
conditions for the existence of the stated constant
interface conditions solution, i.e. it guarantees
the uniqueness of the growth law of the second
phase, R(t). Thus, the basic assumption of
strictly constant T, and C ; (i = 1.2,...,N — 1)
is automatically justified a posteriori for the
second phase problems of the type considered
here. Physically. the necessary and sufficient
compatibility conditions mean that the second
phase can grow if one maintains T(.t) =
T, and Cc,)=C_, (i=1L2.....N—1)

€20

throughout the growth process.

CONCLUSIONS
In Part L an exact treatment of the growth
of a stationary spherical second phase in the
presence of simultaneous heat and multi-com-
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ponent mass transfer limitations has been
demonstrated. In general, a trial-and-error
method must first be used to solve the compati-
bility conditions, equation (16), to obtain the
a priori unknown second phase temperature
and surface concentrations. Having thus deter-
mined T, and C_ (i=12,...,N = 1), the
growth law of the second phase is then readily
obtained. Treating the so-called “impurities”
as components in the surrounding first phase,
our results should include the growth of a
spherical second phase as governed by simul-
taneous heat and mass transfer limitations in the

presence of impurities as asymptotic cases.
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LOI DE CROISSANCE D'UNE SECONDE PHASE SPHERIQUE GOUVERNEE PAR
DES CONDITIONS DE TRANSFERTS SIMULTANES DE CHALEUR ET DE MASSE—I

Résumé-—On considére dans une premiére partie, de nouveaux traitements théoriques de la croissance
d’une seconde phase sphérique et stationnaire, pilotée par des limitations de transferts simultanés de
chaleur et de masse & plusieurs composants. La nouvelle méthode est une extension directe de celle des
références (1-3). Il est démontré que la solution de ces cas couplés compliqués peut étre reliée a des cas non
couplés connus. Ainsi, traitant les “impuretés” comme des composants dans la premiére phase environnante,
les résultats peuvent inclure, comme des cas asymptotiques, la croissance d’une seconde phase sphérique
gouvernée par des limitations de transferts simultanés de chaleur et de masse en présence des impuretés.

WACHSTUMGSGESETZ EINER KUGELFORMIGEN SEKUNDARPHASE FUR
GLEICHZEITIGEN WARME- UND VIEL-KOMPONENTEN-STOFFUBERGANG—I

Im Teil I werden neue theoretische Betrachtungen iiber das Wachstum einer durch
gleichzeitigen Wirmeibergang und Mehrkomponentenstoffibergang begrenzten stationkren kugel-
formigen Sekundéirphase angestellt. Die neue Methode ist cine unmittelbare Erweiterung von [1-3]. Sie
zeigt, dass die Losung dieser komplex iiberlagerten Fille auf vorhandene ungekoppelte Fille {ibertragen
werden kann. Indem man diese sogenannten “Unreinheiten” als Komponenten in der umgebenden ersten
Phase behandeit, soliten unsere Bezichungen das Wachstum einer durch gleichzeitigen Wirme- und
Stoffiibergang begrenzten kugelformigen Sekundiirphase in Anwesenheit der Unreinheiten als asympto-

tische Fille enthalten.

3AKOH POCTA COEPUYECHON BTOPON ®A3bl NP OJHOBPEMEHHOM
NNEPEHOCE TEIIJIA 1 MHOTOKOMIIOHEHTHON MACCBHI—I

AsBoTammn—B dacTe | noxasaHa HOBaA TeopeTHYECKAH TPAKTOBKA POCTA CTALMORAPHON
cdepryeckoll BTOPOIt dastl MPM COBMECTHOM NeEpPEHOCe Tenia ¥ MHOrOKOMMOHEHTHON MacCH.



2282

W. S. CHANG

HoBulit MeTO,| ABIAETCA NPAMBM TPONO/IKEHHEM MeTOJA, M3JI0MKEHHOro B [1-3|. UH noka-

3BIBAET, YTO JJIA DEIIeHMA TAKMX CIOMHBEIX 3aMad B3aMMOCBABAHHOrO TEIUIO-U MACCOOOMEHa

MOMKHO WCIIONB30BaTh M3BECTHEIE 1A NPOCTHX 3a7a4 pemneHuAa. Takum oGpasoM, pacc-

MATpPHUBasA TAK HASHBAEMEIE «IPUMECH» B KA4eCTBEe KOMIIOHEHT OKDPYHawllel uX nepBoi dask,

HeoOXOAMMO BKIIOYATH KAK aCHMITOTHYECKMIt caydalf pocT cepuueckolr BTOpo# daswi,

omnpenesiseMbil 3aKOHOMEPHOCTAMU OJHOBPEMEHHOI0 TeMJIO-H MAaCCOMepeHoCa NpH HaTHYHM
npumeceif.



